Current research areas: Ultrafast optics and photonics, laser physics and engineering, optical imaging, quantum optics, optoelectronic devices, fiber lasers and amplifiers, optical communication, optical materials, optical lithography, nonlinear optics, integrated optics, quantum computing, bio-optics, nano-photonics, and laser cooling.
An extensive selection of optics courses is available to the student considering graduate studies in Optical Science and Engineering. Considerable interaction occurs with the Center for High Technology Materials and the optical research groups at the Air Force Research Laboratory, Sandia National Laboratories, Los Alamos National Laboratory and other organizations in Albuquerque. These facilities offer extensive opportunities for research work toward both the M.S. and the Ph.D. degrees.
The Doctor of Philosophy in Optical Science and Engineering requires a minimum of 52 credit hours of graduate work, exclusive of dissertation. Important: the total credit hours taken from Required courses and Elective courses should be 30 credit hours. A concentration is required for the degree.
Core Courses common to all Concentrations:
Plus the following core courses depending on concentration:
• Imaging Science
ECE 541 Probability Theory and Stochastic Processes
ECE 533 Digital Image Processing
3 credit hours of seminar, including one Optics seminar
• Optical Science
ECE/PHYC *464 Laser Physics I
ECE/PHYC 554 Advanced Optics II
PHYC *466 Methods of Theoretical Physics I -or- MATH *466 Mathematical Methods in Science and Engineering
PHYC 521 Graduate Quantum Mechanics I
PHYC 568 Nonlinear Optics
3 credit hours of seminar, including one Optics seminar
• Photonics
ECE *471 Materials and Devices
ECE 570 Optoelectronic Semiconductor Materials and Devices
ECE 572 Semiconductor Physics
3 credit hours of seminar, including one Optics seminar
• Quantum Optics
30 credit hours of core classes consisting of a mixture of required and option-based electives as described below:
Required courses (18 credit hours)
ECE/PHYC *464 Laser Physics I
ECE 561 Engineering Electrodynamics -or- PHYC 511 Electrodynamics
PHYC 521 Graduate Quantum Mechanics I
PHYC 522 Graduate Quantum Mechanics II
PHYC 566 Quantum Optics
Concentration-specific required courses (9 credit hours)
Choice of three courses from the following list:
ECE/PHYC *463 Advanced Optics I
ECE *471 Materials and Devices II
ECE 533 Digital image Processing
ECE 541 Probability Theory Stochastic Processes
ECE/PHYC 554 Advanced Optics II
ECE 570 Optoelectronic Semiconductor Materials and Devices
ECE 572 Semiconductor Physics
PHYC *476L Experimental Techniques of Optics -or- PHYC *477L Experimental Techniques of Optics
PHYC 568 Nonlinear Optics
PHYC 571 Quantum Computation
PHYC 572 Quantum Information Theory
PHYC 581 Adv T: Quantum Optics II
Option-based electives (3 credit hours)
3 credit hours from the list of OSE approved courses as shown below:
BIOL 547 Advanced Techniques in Light Microscopy
ECE/PHYC *463 Advanced Optics I
ECE *475 Introduction to Electro-Optics and Opto-Electronics
ECE 500 Theory of Linear Systems
ECE 506 Optimization Theory
ECE 510 Medical Imaging
ECE 512 Advanced Image Synthesis
ECE 516 Computer Vision
ECE 517 Pattern Recognition
ECE/NSMS 518 Synthesis of Nanostructures
ECE 533 Digital Image Processing
ECE 539 Digital Signal Processing
ECE 541 Probability Theory and Stochastic Processes
ECE 547 Neural Networks
ECE 549 Information Theory and Coding
ECE 554/PHYC 554 Advanced Optics II
ECE 555 Foundations of engineering Electromagnetics
ECE 563 Computational Methods for Electromagnetics
ECE 564 Guided Wave Optics
ECE 565 Optical Communication Components and Subsystems
ECE 570 Optoelectronic Semiconductor Materials and Devices
ECE 572 Semiconductor Physics -or- PHYC 529: Condensed Matter I
ECE 574L Microelectronics Processing
ECE 577 Fundamentals of Semiconductor LEDs and Lasers
ECE 581 Colloidal Nanocrystals for Biomedical Applications
ECE 595 ST: Electrical and Computer Engineering -or- PHYC 569 Adv T: Modern Optics
ECE 595 ST: Microwave Photonics
ECE 595 ST: Detectors and Hardware
ECE 642 Detection and Estimation Theory
MATH **412 Nonlinear Dynamics and Chaos
MATH *466 Mathematical Methods in Science and Engineering -or- PHYC *466: Methods of Theoretical Physics I
PHYC *464: Laser Physics I
PHYC *476L Experimental Techniques of Optics -or- PHYC *477L Experimental Techniques of Optics
PHYC 531 Atomic and Molecular Structure
PHYC 568 Nonlinear Optics
PHYC 571 Quantum Computation
PHYC 572 Quantum Information Theory
PHYC 581 Adv T: Quantum Optics II
Free electives (22 credit hours)
22 credit hours of free electives (500-level courses and above, including problems courses).
Dissertation hours (18 credit hours)
ECE 699 Dissertation -or- PHYC 699: Dissertation
More information, including possible choices of elective courses, is available at the Optical Science and Engineering program Web site.
Semester | Domestic with TA/GA | Domestic without TA/GA | International |
Fall | December 31st | May 1st | December 31st |
Spring | August 1st | October 1st | August 1st |
:: Required Documents::
The online application allows you to do the following:
Apply Online:Click Here
International Applicants:
Apply Online: Click here